Design Recipes for FPGAs,
Edition 2 Using Verilog and VHDL
By Peter Wilson

Publication Date: 23 Sep 2015
Description

Design Recipes for FPGAs provides a rich toolbox of design techniques and templates to solve practical, every-day problems using FPGAs. Using a modular structure, it provides design techniques and templates at all levels, together with functional code, which you can easily match and apply to your application. Written in an informal and easy to grasp style, this invaluable resource goes beyond the principles of FPGAs and hardware description languages to demonstrate how specific designs can be synthesized, simulated and downloaded onto an FPGA. In addition, the book provides advanced techniques to create ‘real world’ designs that fit the device required and which are fast and reliable to implement.

Key Features

  • Examples are rewritten and tested in Verilog and VHDL
  • Describes high-level applications as examples and provides the building blocks to implement them, enabling the student to start practical work straight away
  • Singles out the most important parts of the language that are needed for design, giving the student the information needed to get up and running quickly
About the author
By Peter Wilson, University of Bath and Integra Designs Ltd., UK
Table of Contents

Part 1: Overview

Introduction

Chapter 1: Introduction

  • Abstract
  • 1.1 Overview
  • 1.2 Verilog vs. VHDL
  • 1.3 Why FPGAs?
  • 1.4 Summary

Chapter 2: An FPGA Primer

  • Abstract
  • 2.1 Introduction
  • 2.2 FPGA Evolution
  • 2.3 Programmable Logic Devices
  • 2.4 Field Programmable Gate Arrays
  • 2.5 FPGA Design Techniques
  • 2.6 Design Constraints using FPGAs
  • 2.7 Development Kits and Boards
  • 2.8 Summary

Chapter 3: A VHDL Primer: The Essentials

  • Abstract
  • 3.1 Introduction
  • 3.2 Entity: Model Interface
  • 3.3 Architecture: Model Behavior
  • 3.4 Process: Basic Functional Unit in VHDL
  • 3.5 Basic Variable Types and Operators
  • 3.6 Decisions and Loops
  • 3.7 Hierarchical Design
  • 3.8 Debugging Models
  • 3.9 Basic Data Types
  • 3.10 Summary

Chapter 4: A Verilog Primer: The Essentials

  • Abstract
  • 4.1 Introduction
  • 4.2 Modules
  • 4.3 Connections
  • 4.4 Wires and Registers
  • 4.5 Defining the Module Behavior
  • 4.6 Parameters
  • 4.7 Variables
  • 4.8 Data Types
  • 4.9 Decision Making
  • 4.10 Loops
  • 4.11 Summary

Chapter 5: Design Automation of FPGAs

  • Abstract
  • 5.1 Introduction
  • 5.2 Simulation
  • 5.3 Libraries
  • 5.4 std_logic Type Definition
  • 5.5 Synthesis
  • 5.6 RTL Design Flow
  • 5.7 Physical Design Flow
  • 5.8 Place and Route
  • 5.9 Timing Analysis
  • 5.10 Design Pitfalls
  • 5.11 Summary

Chapter 6: Synthesis

  • Abstract
  • 6.1 Introduction
  • 6.2 Numeric Types
  • 6.3 Wait Statements
  • 6.4 Assertions
  • 6.5 Loops
  • 6.6 Some Interesting Cases Where Synthesis May Fail
  • 6.7 What Is Being Synthesized?
  • 6.8 Summary

Part 2: Introduction to FPGA Applications

Introduction

Chapter 7: High Speed Video Application

  • Abstract
  • 7.1 Introduction
  • 7.2 The Camera Link Interface
  • 7.3 Getting Started
  • 7.4 Specifying the Interfaces
  • 7.5 Defining the Top Level Design
  • 7.6 System Block Definitions and Interfaces
  • 7.7 The Camera Link Interface
  • 7.8 The PC Interface
  • 7.9 Summary

Chapter 8: Simple Embedded Processors

  • Abstract
  • 8.1 Introduction
  • 8.2 A Simple Embedded Processor
  • 8.3 A Simple Embedded Processor Implemented in VHDL
  • 8.4 A Simple Embedded Processor Implemented in Verilog
  • 8.5 Soft Core Processors on an FPGA
  • 8.6 Summary

Part 3: Designer’s Toolbox

Introduction

Chapter 9: Digital Filters

  • Abstract
  • 9.1 Introduction
  • 9.2 Converting S Domain to Z Domain
  • 9.3 Implementing Z Domain Functions in VHDL
  • 9.4 Basic Low Pass Filter Model
  • 9.5 Implementing Z Domain Functions in Verilog
  • 9.6 Finite Impulse Response Filters
  • 9.7 Infinite Impulse Response Filters
  • 9.8 Summary

Chapter 10: Secure Systems

  • Abstract
  • 10.1 Introduction to Block Ciphers
  • 10.2 Feistel Lattice Structures
  • 10.3 The Data Encryption Standard (DES)
  • 10.4 Advanced Encryption Standard
  • 10.5 Summary

Chapter 11: Memory

  • Abstract
  • 11.1 Introduction
  • 11.2 Modeling Memory in HDLs
  • 11.3 Read Only Memory
  • 11.4 Random Access Memory
  • 11.5 Synchronous RAM
  • 11.6 Flash Memory
  • 11.7 Summary

Chapter 12: PS/2 Mouse Interface

  • Abstract
  • 12.1 Introduction
  • 12.2 PS/2 Mouse Basics
  • 12.3 PS/2 Mouse Commands
  • 12.4 PS/2 Mouse Data Packets
  • 12.5 PS/2 Operation Modes
  • 12.6 PS/2 Mouse with Wheel
  • 12.7 Basic PS/2 Mouse Handler VHDL
  • 12.8 Modified PS/2 Mouse Handler VHDL
  • 12.9 Basic PS/2 Mouse Handler in Verilog
  • 12.10 Summary

Chapter 13: PS/2 Keyboard Interface

  • Abstract
  • 13.1 Introduction
  • 13.2 PS/2 Keyboard Basics
  • 13.3 PS/2 Keyboard Commands
  • 13.4 PS/2 Keyboard Data Packets
  • 13.5 PS/2 Keyboard Operation Modes
  • 13.6 Summary

Chapter 14: A Simple VGA Interface

  • Abstract
  • 14.1 Introduction
  • 14.2 Basic Pixel Timing
  • 14.3 Image Handling
  • 14.4 A VGA Interface in VHDL
  • 14.5 A VGA Interface in Verilog
  • 14.6 Summary

Chapter 15: Serial Communications

  • Abstract
  • 15.1 Introduction
  • 15.2 Manchester Encoding and Decoding
  • 15.3 Implementing the Manchester Encoding Scheme using VHDL
  • 15.4 Implementing the Manchester Encoding Scheme using Verilog
  • 15.5 NRZ (Non-Return-to-Zero) Coding and Decoding
  • 15.6 NRZI (Non-Return-to-Zero-Inverted) Coding and Decoding
  • 15.7 RS-232
  • 15.8 Universal Serial Bus
  • 15.9 Summary

Part 4: Optimizing Designs

Introduction

Chapter 16: Design Optimization

  • Abstract
  • 16.1 Introduction
  • 16.2 Techniques for Logic Optimization
  • 16.3 Improving Performance
  • 16.4 Critical Path Analysis
  • 16.5 Summary

Chapter 17: Behavioral Modeling in using HDLs

  • Abstract
  • 17.1 Introduction
  • 17.2 How to Go from RTL to Behavioral HDL Descriptions
  • 17.3 Implementing the Behavioral Model using VHDL
  • 17.4 Implementing the Behavioral Model using Verilog
  • 17.5 Summary

Chapter 18: Mixed Signal Modeling

  • Abstract
  • 18.1 Introduction
  • 18.2 Basic Modeling Approach for VHDL-AMS
  • 18.3 Introduction to VHDL-AMS
  • 18.4 VHDL-AMS Analog Pins: TERMINALS
  • 18.5 Mixed Domain Modeling
  • 18.6 VHDL-AMS Analog Variables: Quantities
  • 18.7 Simultaneous Equations in VHDL-AMS
  • 18.8 A VHDL-AMS Example: A DC Voltage Source
  • 18.9 A VHDL-AMS Example: Resistor
  • 18.10 Differential Equations in VHDL-AMS
  • 18.11 Mixed-Signal Modeling with VHDL-AMS
  • 18.12 A Basic Switch Model
  • 18.13 Basic VHDL-AMS Comparator Model
  • 18.14 Multiple Domain Modeling
  • 18.15 Introduction to Verilog-AMS
  • 18.16 Verilog-AMS: Analog ports
  • 18.17 Mixed Domain Modeling in Verilog-AMS
  • 18.18 Verilog-AMS Analog Variables
  • 18.19 Verilog-AMS Analog Equations
  • 18.20 A Verilog-AMS Example
  • 18.21 Differential Equations in Verilog-AMS
  • 18.22 Mixed Signal Modeling with Verilog-AMS
  • 18.23 Multiple Domain Modeling using Verilog-AMS
  • 18.24 Summary

Chapter 19: Design Optimization Example: DES

  • Abstract
  • 19.1 Introduction
  • 19.2 The Data Encryption Standard
  • 19.3 MOODS
  • 19.4 Initial Design
  • 19.5 Initial Synthesis
  • 19.6 Optimizing the Datapath
  • 19.7 Final Optimization
  • 19.8 Results
  • 19.9 Triple DES
  • 19.10 Comparing the Approaches
  • 19.11 Summary

Part 5: Fundamental Techniques

Introduction

Chapter 20: Latches, Flip-Flops, and Registers

  • Abstract
  • 20.1 Introduction
  • 20.2 Latches
  • 20.3 Flip-Flops
  • 20.4 Registers
  • 20.5 Summary

Chapter 21: ALU Functions

  • Abstract
  • 21.1 Introduction
  • 21.2 Logic Functions in VHDL
  • 21.3 Structural n-Bit Addition
  • 21.4 Logic Functions in Verilog
  • 21.5 Configurable n-Bit Addition
  • 21.6 Two’s Complement
  • 21.7 Summary

Chapter 22: Finite State Machines in VHDL and Verilog

  • Abstract
  • 22.1 Introduction
  • 22.2 State Transition Diagrams
  • 22.3 Implementing Finite State Machines in VHDL
  • 22.4 Implementing Finite State Machines in Verilog
  • 22.5 Testing the Finite State Machine Model
  • 22.6 Summary

Chapter 23: Fixed Point Arithmetic

  • Abstract
  • 23.1 Introduction
  • 23.2 Basic Fixed Point Types in VHDL
  • 23.3 Fixed Point Functions in VHDL
  • 23.4 Testing the VHDL Fixed Point Functions
  • 23.5 Fixed Point Types in Verilog
  • 23.6 Floating Point Types in Verilog
  • 23.7 Summary

Chapter 24: Counters

  • Abstract
  • 24.1 Introduction
  • 24.2 Basic Binary Counter using VHDL
  • 24.3 Simple Binary Counter using Verilog
  • 24.4 Synthesized Simple Binary Counter
  • 24.5 Shift Register
  • 24.6 The Johnson Counter
  • 24.7 BCD Counter
  • 24.8 Summary

Chapter 25: Decoders and Multiplexers

  • Abstract
  • 25.1 Decoders
  • 25.2 Multiplexers
  • 25.3 Summary

Chapter 26: Multiplication

  • Abstract
  • 26.1 Introduction
  • 26.2 Basic Binary Multiplication
  • 26.3 VHDL Unsigned Multiplier
  • 26.4 Synthesis of the Multiplication Function
  • 26.5 Simple Multiplication using VHDL
  • 26.6 Simple Multiplication using Verilog
  • 26.7 Summary

Chapter 27: Simple 7-Segment (LCD) Displays

  • Abstract
  • 27.1 Introduction
  • 27.2 VHDL LCD Module Decoder
  • 27.3 Verilog LCD Module Decoder
  • 27.4 Summary

Bibliography

  • Introduction
  • Useful Texts for VHDL
  • Useful Texts for Verilog
  • Useful Texts for FPGAs
  • General Digital Design Books
Book details
ISBN: 9780080971292
Page Count: 392
Retail Price : £45.99
  • Grout: Digital Systems Design with FPGAs and CPLDs (Newnes, 2008). ISBN 9780750683975. Paperback, 784pp, $83.95/ £50.99. LTD sales 664.
  • Maxfield: Design Warrior's Guide to FPGAs (Newnes, 2004). ISBN 9780750676045. Paperback, 560pp, $65.95/ £39.99. LTD sales 7146.
  • Smith: FPGAs 101 (Newnes, 2010). ISBN 9781856177061. Paperback, 240pp, $44.95/ £27.99. LTD sales 220.
  • Instructor Resources
    Audience
    Embedded system development engineers, FPGA engineers, hardware and software engineers. Undergraduates and postgraduates studying an embedded system which focuses on FPGA design