Civil Engineering Materials,
Edition 1
By Peter A. Claisse

Publication Date: 24 Sep 2015
Description

Civil Engineering Materials explains why construction materials behave the way they do. It covers the construction materials content for undergraduate courses in civil engineering and related subjects and serves as a valuable reference for professionals working in the construction industry. The book concentrates on demonstrating methods to obtain, analyse and use information rather than focusing on presenting large amounts of data. Beginning with basic properties of materials, it moves on to more complex areas such as the theory of concrete durability and corrosion of steel.

Key Features

  • Discusses the broad scope of traditional, emerging, and non-structural materials
  • Explains what material properties such as specific heat, thermal conductivity and electrical resistivity are and how they can be used to calculate the performance of construction materials.
  • Contains numerous worked examples with detailed solutions that provide precise references to the relevant equations in the text.
  • Includes a detailed section on how to write reports as well as a full section on how to use and interpret publications, giving students and early career professionals valuable practical guidance.
About the author
By Peter A. Claisse, Professor, Emeritus, Coventry University, UK
Table of Contents
  • Summary
  • Abbreviations
  • Introduction
  • Chapter 1: Units
    • Abstract
    • Notation
    • 1.1. Introduction
    • 1.2. Symbols
    • 1.3. Scientific notation
    • 1.4. Unit prefixes
    • 1.5. Logs
    • 1.6. Accuracy
    • 1.7. Unit analysis
    • 1.8. MKS SI units
    • 1.9. US customary units
    • 1.10. CGS units
    • 1.11. Properties of water in different units
    • 1.12. Summary
  • Chapter 2: Strength of materials
    • Abstract
    • Notation
    • 2.1. Introduction
    • 2.2. Mass and gravity
    • 2.3. Stress and strength
    • 2.4. Strain
    • 2.5. Deformation and strength
    • 2.6. Modulus of elasticity
    • 2.7. Poisson’s ratio
    • 2.8. Fatigue strength
    • 2.9. Creep
    • 2.10. Conclusions
  • Chapter 3: Failure of real construction materials
    • Abstract
    • Notation
    • 3.1. Introduction
    • 3.2. The steel sample
    • 3.3. The concrete sample
    • 3.4. The timber samples
    • 3.5. Summary
  • Chapter 4: Thermal properties
    • Abstract
    • Notation
    • 4.1. Introduction
    • 4.2. Temperature
    • 4.3. Energy
    • 4.4. Specific heat
    • 4.5. Thermal conductivity
    • 4.6. Thermal capacity, thermal diffusivity, and thermal inertia
    • 4.7. Coefficient of thermal expansion
    • 4.8. Heat generation
    • 4.9. Heat absorption, reflection, and radiation
    • 4.10. Typical values
    • 4.11. Summary
  • Chapter 5: Pressure
    • Abstract
    • Notation
    • 5.1. Introduction
    • 5.2. Pressure on a fluid
    • 5.3. The effect of gravity on pressure
    • 5.4. The effect of temperature on gas pressure
    • 5.5. Propagation of waves
    • 5.6. The bulk modulus
    • 5.7. Attenuation of waves
    • 5.8. Conclusions
  • Chapter 6: Electrical properties
    • Abstract
    • Notation
    • 6.1. Introduction
    • 6.2. Electric charge
    • 6.3. Electric current
    • 6.4. Voltage
    • 6.5. Electric field
    • 6.6. Resistance
    • 6.7. Capacitance
    • 6.8. Power
    • 6.9. Electric current in concrete
    • 6.10. Electrical test apparatus
    • 6.11. Conclusions
  • Chapter 7: Chemistry of construction materials
    • Abstract
    • Notation
    • 7.1. Introduction
    • 7.2. The components of the atom
    • 7.3. Chemical elements
    • 7.4. Molecules
    • 7.5. Chemical reactions
    • 7.6. Acids and bases
    • 7.7. Oxidizing agents and reducing agents
    • 7.8. Chemicals dissolved in water
    • 7.9. The lime cycle
    • 7.10. The gypsum cycle
    • 7.11. Summary
  • Chapter 8: Properties of fluids in solids
    • Abstract
    • Notation
    • 8.1. Introduction
    • 8.2. Viscosity
    • 8.3. Water and water Vapour
    • 8.4. Porosity
    • 8.5. Condensation in pores
    • 8.6. Water in pores
    • 8.7. Drying of materials
    • 8.8. Summary
  • Chapter 9: Transport of fluids in solids
    • Abstract
    • Notation
    • 9.1. Introduction
    • 9.2. Flow in a porous solid
    • 9.3. Pressure driven flow
    • 9.4. Thermal gradient
    • 9.5. Capillary suction
    • 9.6. Osmosis
    • 9.7. Electro-osmosis
    • 9.8. Summary
  • Chapter 10: Transport of ions in fluids
    • Abstract
    • Notation
    • 10.1. Introduction
    • 10.2. Ions in solution
    • 10.3. Flow rates
    • 10.4. Diffusion in a nonadsorbing system
    • 10.5. Adsorption in a porous solid
    • 10.6. Diffusion with adsorption
    • 10.7. Electromigration
    • 10.8. Conclusions
  • Chapter 11: Ionising radiation
    • Abstract
    • Notation
    • 11.1. Introduction
    • 11.2. Types of ionising radiation
    • 11.3. Sources of radiation
    • 11.4. Half-lives
    • 11.5. The effect of radiation on materials
    • 11.6. The effect of radiation on the body
    • 11.7. Shielding
    • 11.8. Conclusions
  • Chapter 12: Variability and statistics
    • Abstract
    • Notation
    • 12.1. Introduction
    • 12.2. Sampling
    • 12.3. Distributions
    • 12.4. Probability
    • 12.5. Correlations
    • 12.6. Conclusions
  • Chapter 13: Use of test results
    • Abstract
    • Notation
    • 13.1. Introduction
    • 13.2. Sources of variations in concrete strength test results
    • 13.3. Making decisions about failing test results
    • 13.4. Identifying the source of the problem
    • 13.5. Multivariate analysis
    • 13.6. Designing for durability
    • 13.7. Conclusions
  • Chapter 14: Specifications and standards
    • Abstract
    • 14.1. Introduction
    • 14.2. Specifications
    • 14.3. Standards
    • 14.4. Building codes
    • 14.5. Repeatability and reproducibility
    • 14.6. Quality assurance
    • 14.7. Conclusions
  • Chapter 15: Reporting results
    • Abstract
    • 15.1. Introduction
    • 15.2. Graphs
    • 15.3. References
    • 15.4. How to get good marks for your materials lab reports
    • 15.5. How to publish a paper on materials
    • 15.6. Verbal presentation
    • 15.7. Conclusions
  • Chapter 16: Testing construction materials
    • Abstract
    • 16.1. Introduction
    • 16.2. How to find references
    • 16.3. Types of references
    • 16.4. Defining the objectives of a research programme
    • 16.5. Carrying out a research programme
    • 16.6. The statistical basis
    • 16.7. The publication
    • 16.8. Conclusions
  • Chapter 17: Introduction to cement and concrete
    • Abstract
    • 17.1. Introduction
    • 17.2. Cement and concrete
    • 17.3. Uses of cement
    • 17.4. Strength of concrete
    • 17.5. Reinforced concrete
    • 17.6. Prestressed concrete
    • 17.7. Cement replacements
    • 17.8. Admixtures
    • 17.9. Environmental impact
    • 17.10. Durability
    • 17.11. Conclusions
  • Chapter 18: Cements and cement replacement materials
    • Abstract
    • 18.1. Introduction
    • 18.2. Cements
    • 18.3. Cement replacement materials (also known as mineral admixtures)
    • 18.4. Cement standards
    • 18.5. Conclusions
  • Chapter 19: Aggregates for concrete and mortar
    • Abstract
    • 19.1. Introduction
    • 19.2. Environmental impact of aggregate extraction
    • 19.3. Aggregate sizes
    • 19.4. Mined aggregates
    • 19.5. Artificial aggregates
    • 19.6. Major hazards with aggregates
    • 19.7. Properties of aggregates
    • 19.8. Conclusions
  • Chapter 20: Hydration of cement
    • Abstract
    • Notation
    • 20.1. Introduction
    • 20.2. Heat of hydration
    • 20.3. Types of porosity
    • 20.4. Calculation of porosity
    • 20.5. Influence of porosity
    • 20.6. Curing
    • 20.7. Conclusions
  • Chapter 21: Concrete mix design
    • Abstract
    • 21.1. Introduction
    • 21.2. UK mix design
    • 21.3. US mix design
    • 21.4. Mix design with cement replacements
    • 21.5. Mix design for air-entrained concrete
    • 21.6. Mix design for self-compacting concrete
    • 21.7. Redesigning mixes using trial batch data
    • 21.8. US units
    • 21.9. Conclusions
  • Chapter 22: Testing wet and hardened concrete
    • Abstract
    • Notation
    • 22.1. Introduction
    • 22.2. Workability
    • 22.3. Bleeding and segregation
    • 22.4. Air content
    • 22.5. Compressive strength testing
    • 22.6. Tensile and bending strength testing
    • 22.7. Measurement of modulus of elasticity
    • 22.8. Durability tests
    • 22.9. Conclusions
  • Chapter 23: Creep, shrinkage, and cracking of concrete
    • Abstract
    • 23.1. Creep
    • 23.2. Shrinkage
    • 23.3. Cracking
    • 23.4. Preventing problems caused by shrinkage and cracks
    • 23.5. Conclusions
  • Chapter 24: Admixtures for concrete
    • Abstract
    • 24.1. Introduction
    • 24.2. Plasticisers and superplasticisers
    • 24.3. Viscosity modifying admixtures
    • 24.4. Air entrainers
    • 24.5. Retarders
    • 24.6. Accelerators
    • 24.7. Other admixtures
    • 24.8. Using admixtures on site
    • 24.9. Conclusions
  • Chapter 25: Durability of concrete structures
    • Abstract
    • 25.1. Introduction
    • 25.2. Transport processes in concrete
    • 25.3. Corrosion of reinforcement
    • 25.4. Sulphate attack
    • 25.5. Alkali–silica reaction
    • 25.6. Frost attack
    • 25.7. Salt crystallisation
    • 25.8. Delayed ettringite formation
    • 25.9. Durability modelling
    • 25.10. Conclusions for corrosion and corrosion protection
  • Chapter 26: Production of durable concrete
    • Abstract
    • 26.1. Introduction
    • 26.2. Design for durability
    • 26.3. Specification for durability
    • 26.4. Placing durable concrete
    • 26.5. Curing
    • 26.6. Conclusions
  • Chapter 27: Assessment of concrete structures
    • Abstract
    • 27.1. Introduction
    • 27.2. Planning the test programme
    • 27.3. Test methods for strength
    • 27.4. Test methods for durability
    • 27.5. Presenting the results
    • 27.6. Conclusions
  • Chapter 28: Mortars and grouts
    • Abstract
    • 28.1. Introduction
    • 28.2. Masonry mortars
    • 28.3. Rendering
    • 28.4. Cementitious grouts
    • 28.5. Cementitious repair mortars
    • 28.6. Floor screeds
    • 28.7. Conclusions
  • Chapter 29: Special concretes
    • Abstract
    • 29.1. Introduction
    • 29.2. Low cost concrete
    • 29.3. Concrete with reduced environmental impact
    • 29.4. Low density concrete
    • 29.5. High-density concrete
    • 29.6. Underwater concrete
    • 29.7. Ultra-high strength concrete
    • 29.8. Ultra-durable concrete
    • 29.9. Concrete with good appearance (architectural concrete)
    • 29.10. Fast setting concrete
    • 29.11. Concrete without formwork
    • 29.12. Self-compacting concrete
    • 29.13. Roller-compacted concrete
    • 29.14. Conclusions
  • Chapter 30: Steel
    • Abstract
    • 30.1. Introduction
    • 30.2. Iron–carbon compounds
    • 30.3. Control of grain size
    • 30.4. Manufacturing and forming processes
    • 30.5. Steel grades
    • 30.6. Mechanical properties
    • 30.7. Steel for different applications
    • 30.8. Joints in steel
    • 30.9. Conclusions
  • Chapter 31: Corrosion
    • Abstract
    • Notation
    • 31.1. Introduction
    • 31.2. Electrolytic corrosion
    • 31.3. The effect of pH and potential
    • 31.4. Measuring corrosion rates with linear polarisation
    • 31.5. Corrosion of steel in concrete
    • 31.6. Corrosion prevention
    • 31.7. Conclusions
  • Chapter 32: Alloys and nonferrous metals
    • Abstract
    • 32.1. Introduction
    • 32.2. Alloys
    • 32.3. Comparison of nonferrous metals
    • 32.4. Copper
    • 32.5. Zinc
    • 32.6. Aluminium
    • 32.7. Lead
    • 32.8. Plating
    • 32.9. Conclusions
  • Chapter 33: Timber
    • Abstract
    • Notation
    • Notation subscripts
    • 33.1. Introduction
    • 33.2. The environmental impact of forestry
    • 33.3. Production
    • 33.4. Engineered wood products
    • 33.5. Strength of timber
    • 33.6. Jointing timber
    • 33.7. Durability of timber
    • 33.8. Preservation of timber
    • 33.9. Bamboo
    • 33.10. Conclusions – timber construction
  • Chapter 34: Masonry
    • Abstract
    • 34.1. Introduction
    • 34.2. Clay bricks
    • 34.3. Calcium silicate bricks
    • 34.4. Concrete bricks
    • 34.5. Concrete blocks
    • 34.6. Natural stones
    • 34.7. Roofing tiles
    • 34.8. Slates
    • 34.9. Masonry construction detailing
    • 34.10. Masonry construction supervision
    • 34.11. Conclusions – masonry construction
  • Chapter 35: Plastics
    • Abstract
    • 35.1. Introduction
    • 35.2. Terminology
    • 35.3. Mixing and placement
    • 35.4. Properties of plastics
    • 35.5. Modes of failure (durability)
    • 35.6. Typical applications in construction
    • 35.7. Conclusions
  • Chapter 36: Glass
    • Abstract
    • 36.1. Introduction
    • 36.2. Glass for glazing
    • 36.3. Glass fibres
    • 36.4. Glass wool
    • 36.5. Conclusions
  • Chapter 37: Bituminous materials
    • Abstract
    • 37.1. Introduction
    • 37.2. Binder properties
    • 37.3. Binder testing
    • 37.4. Binder mixtures
    • 37.5. Asphalt mixtures
    • 37.6. Testing asphalt mixtures
    • 37.7. Mix designs for asphalt mixtures
    • 37.8. Use in road construction
    • 37.9. Other applications of binders
    • 37.10. Conclusions
  • Chapter 38: Composites
    • Abstract
    • 38.1. Introduction
    • 38.2. Reinforcing bars in concrete
    • 38.3. Fibre reinforcement in concrete
    • 38.4. Steel/concrete composite bridge decks
    • 38.5. Fibre reinforced plastics
    • 38.6. Structural insulated panels
    • 38.7. Conclusions
  • Chapter 39: Adhesives and sealants
    • Abstract
    • 39.1. Introduction
    • 39.2. Adhesives
    • 39.3. Sealants
    • 39.4. Conclusions
  • Chapter 40: Comparison of different materials
    • Abstract
    • 40.1. Introduction
    • 40.2. Comparing the strength of materials
    • 40.3. Comparing environmental impact
    • 40.4. Health and safety
    • 40.5. Conclusions
  • Chapter 41: New technologies
    • Abstract
    • 41.1. Introduction
    • 41.2. 3D printing
    • 41.3. Photocatalytic admixtures
    • 41.4. Self-healing concrete
    • 41.5. Zero cement concrete
    • 41.6. Durability modelling
    • 41.7. Hemp lime
    • 41.8. Wood–glass epoxy composites
    • 41.9. Bamboo
    • 41.10. Conclusions
  • Tutorial Questions
  • Subject Index
Book details
ISBN: 9780081002759
Page Count: 528
Retail Price : £61.00
  • Claisse, Transport Properties of Concrete, Woodhead Publishing, 9781782423065, May 2014
  • Ashby/Jones, Engineering Materials 1: An Introduction to Properties, Applications and Design 4e, Butterworth Heinemann, 9780080966656, Sep 2011
  • Megson, Structural and Stress Analysis, 3e, Butterworth Heinemann, 9780080999364, Feb 2014
Audience

Undergraduate students in civil and construction engineering programs; early career civil engineers; researchers