Working with Dynamic Crop Models,
Edition 3 Methods, Tools and Examples for Agriculture and Environment
By Daniel Wallach, David Makowski, James W. Jones and Francois Brun

Publication Date: 28 Sep 2018

Working with Dynamic Crop Models: Methods, Tools and Examples for Agriculture and Environment, 3e, is a complete guide to working with dynamic system models, with emphasis on models in agronomy and environmental science. The introductory section presents the foundational information for the book including the basics of system models, simulation, the R programming language, and the statistical notions necessary for working with system models. The most important methods of working with dynamic system models, namely uncertainty and sensitivity analysis, model calibration (frequentist and Bayesian), model evaluation, and data assimilation are all treated in detail, in individual chapters.

New chapters cover the use of multi-model ensembles, the creation of metamodels that emulate the more complex dynamic system models, the combination of genetic and environmental information in gene-based crop models, and the use of dynamic system models to aid in sampling.

The book emphasizes both understanding and practical implementation of the methods that are covered. Each chapter simply and clearly explains the underlying principles and assumptions of each method that is presented, with numerous examples and illustrations. R code for applying the methods is given throughout. This code is designed so that it can be adapted relatively easily to new problems.

Key Features

  • An expanded introductory section presents the basics of dynamic system modeling, with numerous examples from multiple fields, plus chapters on numerical simulation, statistics for modelers, and the R language
  • Covers in detail the basic methods: uncertainty and sensitivity analysis, model calibration (both frequentist and Bayesian), model evaluation, and data assimilation
  • Every method chapter has numerous examples of applications based on real problems, as well as detailed instructions for applying the methods to new problems using R
  • Each chapter has multiple exercises for self-testing or for classroom use
  • An R package with much of the code from the book can be freely downloaded from the CRAN package repository
About the author
By Daniel Wallach, Institut National de la Recherche Agronomique INRA, UMR INRA/INP, Toulouse, France; David Makowski, Institut National de la Recherche Agronomique INRA, UMR INRA/INA, Thiverval-Grignon, France; James W. Jones, Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL, USA and Francois Brun, ACTA-INRA Toulouse, Castanet Tolosan, France
Table of Contents

Section A Background
1. Basics of Agricultural System Models
2. The R Programming Language and Software
3. Simulation with Dynamic System Models
4. Statistical Notions Useful for Modeling
5. Regression Analysis, Frequentist

Section B Basic methods
6. Uncertainty and Sensitivity Analysis
7. Calibration of System Models

8. Parameter Estimation With Bayesian Methods
9. Model Evaluation
10. Putting It All Together in a Case Study

Section C Advanced Methods
11. Metamodeling
12. Multimodel Ensembles
13. Gene-Based Crop Models
14. Data Assimilation for Dynamic Models
15. Models as an Aid to Sampling

Appendix 1:   The Models Included in the ZeBook R Package: Description, R Code, and Examples of Results

Appendix 2:  An Overview of the R Package ZeBook

Book details
ISBN: 9780128117569
Page Count: 613
Retail Price : £115.00
  • Farkas, Dynamical Models in Biology, 2001, 9780122491030, $143.00
  • Snapp and Pound, Agricultural Systems, 2008, 9780123725172, $77.95
  • Menke, Environmental Analysis with Matlab, 2011, 9780123918864, $79.95

Researchers and advanced students in agronomy, agricultural and biological engineering, agricultural economics and agricultural statistics